JUDUL

EARTH SCIENCE AND ASTRONOMY

WELCOME

WELCOME TO MY HOUSE

THANK YOU FOR VISIT ME
COME BACK LATER

Rabu, 17 November 2010

BEBERAPA DESKRIPTIF MINERAL PENTING


1. Emas, Au


Tempat ditemukan : Sulida, Sumatra Barat
Sistem Kristal : Isometrik
Warna : Kuning – Emas
Goresan : Kuning
Kilap : Metalik
Belahan dan pecahan : Tak – ada ; hakli ( pecahan bergerigi dengan
ujung yang tajam ).
Kekerasan : 2,5 – 3
Berat jenis : 19,3
Genesis : kebanyakan emas terdapat dalam urat-urat kuarsa yang terbentuk melalui proses hidrotermal; dan sering bersama-sama pirit dan mineral-mineral sulfida yang lain, telurid perak-emas, skhelit dan turmalin. Bila urat-urat mengandung emas melapuk, maka emas-emas akan terpisah dan kemudian mengendap sebagai deposit eluvial, atau terangkut oleh aliran air dan mengendap di suatu tempat sebagai deposit letakan (placer deposit), bersama pasir, dan atau kerikil-kerakal.
Manfaat : sumber logam emas; dipakai untuk membuat perhiasan, instrumen-instrumen saintifik, lempengan elektrode, pelapis gigi dan emas lantakan.


2. Perak, Ag
Tempat ditemukan : Irian Jaya
Sistem Kristal : Isometrik.
Warna : Putih – Perak
Goresan : Coklat, atau abu-abu sampai hitam.
Belahan dan Pecahan : Tak – ada
Kekerasan : 2,5 – 3.
Berat Jenis : 10,5.
Genesis : sejumlah kecil perak nativ dapat dijumpai dalam zone oksidasi pada suatu deposit bijih, atau sebagai deposit yang mengendap dari larutan hidrotermal primer. Ada 3 jenis deposit primer, yaitu: 1. Barasosiasi dengan sulfida, zeolit, kalsit, barit, fluorit dan kuarsa, 2. Barasosiasi dengan arsenida dan sulfida kobalt, nikel dan perak, dan bismut nativ, dan 3. Berasosiasi dengan uraninit dan mineral- mineral nikel-kobalt.
Manfaat : sumber logam perak; dipakai untuk membuat perhiasan, alat-alat makan-minum, barang-barang kerajinan tangan, alat-alat elektronik, penyepuhan dan sebagai emulsi film fotografi.


3. Tembaga, Cu
Tempat ditemukan : Timor , NTT
Sistem cristal : isometrik.
Warna : Merah-tembaga , atau merah-mawar terang.
Goresan : Merah metalik.
Belahan dan pecahan : Tak ada ; hakli
Kekerasan : 2,5 – 3.
Berat Jenis : 8,94.
Genesis : sejumlah kecil tembaga nativ dijumpai pada zona oksidasi dalam deposit tembaga yang berasosiasi dengan kuprit, malakit dan azurit. Deposit primer umumnya berasosiasi dengan batuan beku basa ekstrutif, dan tembaga nativ terbentuk dari pengendapan yang dihasilkan dari reaksi antara larutan hidrotermal dan mineral-mineral oksidasi besi. Pada deposit tipe ini, tembaga nativ berasosiasi dengan khalkosit, bornit, epidot, kalsit, prehnit, datolit, khlorit, zeolit dan sejumlah kecil perak nativ.
Manfaat : sumber minor bijih tembaga, banyak digunakan dalam kelistrikan, umumnya sebagai kawat, dan untuk membuat logam-logam campuran, seperti kuningan (campuran tembaga dan seng), perunggu (campuran tembaga dan timah dengan sedikit seng) dan perak Jerman (campuran tembaga seng dan nikel).


4. Sulfur, S
Tempat ditemukan : Kawah Papandayan, Jawa Barat
Sistem Cristal : Ortorombik.
Warna : Kuning sampai coklat kekuningan.
Goresan : Putih.
Belahan dan pecahan : Tak ada ; Konkoidal sampai tidak rata.
Kekerasan : 1,5 – 2,5.
Berat jenis : 2,07.
Genesis : Sulfur dapat terbentuk di daerah gunungapi aktif, di sekitar mata air panas, dan hasil aktivitas bakteri yang memisahkan sulfur dari sulfat. Dapat pula terbentuk karena oksidasi sulfida-sulfida pada urat-urat yang berasosiasi dengan sulfida-sulfida metal. Dijumpai juga pada batuan-batuan sedimen yang berasosiasi dengan anhidrit, gipsum dan batugamping.
Manfaat : sulfur digunakan untuk membuat senyawa-senyawa sulfur, seperti asam sulfat (H2SO4); dalam pembuatan insektisida, pupuk buatan, vulkanisasi karet, sabun; dalam industri tekstil, kulit, kertas, cat, pencelupan dan penggilingan minyak.


5. Bismut, Bi
Tempat Ditemukan : -
Sistem Cristal : Trigonal .
Warna : Putih perak dan corak kemerahan.
Goresan : putih – perak berkilau.
Belahan dan pecahan : sempurna pada ( 0001 ).
Kekerasan : 2 – 2,5.
Berat jenis : 9,7 -9,8.
Genesis : Terbentuk secara hidrotermal, dapat dijumpai dalam urat-urat bersama bijih kobalt, nikel, timah, dan perak ; dapat juga dalam pegmatit.
Manfaat : Sumber logam bismut ; digunakan dalam sekering listrik, obat dan kosmetik.,


6. Grafit, C
Tempat Ditemukan : Kepulauan Semrau, Sanggau, Kal-Bar
Sistem Cristal : Heksagonal .
Warna : Hitam.
Goresan : Hitam.
Belahan dan pecahan : Sempurna pada ( 0001 ) ; tak ada
Kekerasan : 1 – 2.
Berat jenis : 2,09 – 2,23.
Genesis : terbentuk pada lingkungan batuan metamorf, baik pada metamorf fisme regional, atau kontak. Dapat dijumpai pada batu gamping kristalin, genes, sekis, kuarsit, dan lapisan batubara termetamorf.
Manfaat : digunakan dalam industri sebagai alat pemotong kaca, pengasah, dipasang pada mata bor untuk eksplorasi; dan dijadikan batupermata.


7. Intan, C
Tempat Ditemukan : Martapura, Kalimantan
Sistem Cristal : isometrik.
Warna : umumnya kuning pucat, atau tak berwarna, dapat pula coklat, putih sampai putih kebiruan, jingga, merah muda, biru, merah, hijau, atau hitam.
Goresan : putih
Belahan dan pecahan : sempurna pada ( 111 ) ; konkoidal.
Kekerasan : 10
Berat jenis : 3,50
Genesis : intan terbentuk pada pembentukan batuan beku ultrabasa, yaitu porfiri-olivin, atau porfiri kaya-flogopit; batuan ini dikenal sebagai kimberlit. Dapat dijumpai dalam deposit aluvial, baik di sungai-sungai maupun di pantai.
Manfaat : digunakan dalam industri sebagai alat pemotong kaca, pengasah, dipasang pada mata bor untuk eksplorasi; dan dijadikan batupermata.


8. Bornit , Cu5FeS5
Tempat Ditemukan : Irian Jaya
Sistem Cristal : Isometrik.
Warna : Merah-tembaga sampai kecoklatan bila permukaannya segar, yang cepat berubah menjadi pudar sampai keunguan.
Goresan : Hitam keabuan.
Belahan dan pecahan : ( 111 ) tidak jelas ; konkoidal sampai tidak jelas.
Kekerasan : 3
Berat jenis : 5,06 – 5,08
Genesis : Ternentuk secara proses hidrotermal, dan berasosiasi dengan mineral-mineral sulfida yang lain ( Khalkosit, Khalkopirit, kovelit, pirotit, dan pirit) dalam deposit hidrogen. Bornit juga dijumpai dalam retas (dike), tubuh intrusi batuan basa, tersebar dalam batuan basa, deposit metamorfik kontak, dalam pegmatit dan urat-urat kuarsa.
Manfaat : Mineral bijih sumber logam tembaga.


9. Galena, PbS
Tempat Ditemukan : S.Tuboh, Palembang
Sistem Cristal : Isometrik .
Warna : abu – abu timbal
Goresan : abu – abu timbal
Belahan dan pecahan : ( 001 ) Sempurna.
Kekerasan : 2,5
Berat jenis : 7,58
Genesis : Terbentuk dalam batuan sedimen, urat-urat hidrotermal dan juga pegmatit. Dalam urat-urat hidrotermal berasosiasi dengan mineral-mineral perak, sfalerit, pirit, markasit, khalkopirit, serusit, anglesit, dolomit, kalsit, kuarsa, baris, dan fluorit. Dapat pula ditemukan dalam deposit metamorfisme kontak.
Manfaat : sumber logam timbal atau timah hitam ( Pb ).


10. Sfalerit, ( Zn,Fe)S
Tempat Ditemukan : Plered, Karawang Jawa Barat
Sistem Cristal : Isometrik .
Warna : Kuning, cokelat sampai hitam.
Goresan : Putih sampai kunung terang dan cokelat.
Belahan dan pecahan : ( 110 ) sempurna.
Kekerasan : 3,5 - 4
Berat jenis : 3,9 – 4,1
Genesis : Terbentuk melalui proses hidrotermal, terdapat urat-urat dan berasosiasi dengan pirotit, pirit, dam magnetit. Dapat pula dijumpai dalam deposit metamorfisme kontak.
Manfaat : Mineral bijih sumber logam seng. Selain itu dapat pula menjadi sumber kadmium (Cd), indium (In), galium (Ga) dan germanium (Ge)


11. Khalkopirit
Tempat Ditemukan : Pegunungan tengah, Irian Jaya
Sistem Cristal : Tetragonal .
Warna : kuning - kuningan
Goresan : hitam kehijauan
Belahan dan pecahan : {001} kadang-kadang jelas ; tak rata
Kekerasan : 3,5 - 4
Berat jenis : 4,1 – 4,3
Genesis : Terbentuk melalui proses hidrotermal,terutama terdapat dalam deposit mesotermal dan hipotermal. Dalam deposit hipotermal, khalkopirit terdapat bersama pirit, turmalin, kuarsa dan kasiterit. Dijumpai juga dalam batuan beku, retas pegmatit dan dalam deposit metamorfisme kontak.
Manfaat : mineral bijih sumber logam tembaga.


12. Khromit, ( Mg,Fe ) Cr2O4
Tempat Ditemukan : Padamarang, Sulawesi.
Sistem Cristal : isometrik .
Warna : hitam – besi sampai hitam - kecoklatan
Goresan : coklat gelap
Belahan dan pecahan : tak ada ; tidak rata
Kekerasan : 5,5
Berat jenis : 5,09
Genesis : terbentuk pada lingkungan batuan beku ultra basa, seperti peridotit dan serpentit. Dapat pula pada lingkungan redimen, yaitu terdapat dalam pasir
Manfaat : mineral bijih sumber logam khrom




13. Realgar, AsS
Tempat Ditemukan : Salapa, TasikMalaya Jawa Barat
Sistem Cristal : Monoklin.
Warna : Merah-ungu
Goresan : Merah sampai jingga
Belahan dan pecahan : {010}baik ; {101},{100} dan {120} miskin
Kekerasan : 1,5 - 2
Berat jenis : 3,56
Genesis : Terbentuk secara proses hidrotermal, dan terdapat dalam urat-urat sulfida bersama orpiment dan mineral arsenik lainnya, juga dengan stibnit, bijih timbal, perak, atau bijih emas. Kadang-kadang dijumpai pula dalam batugamping, dolomit, atau batuan lempungan, juga sebagai hasil sublimasi dari emanasi volkanik, atau sebagai deposit mata air panas.
Manfaat : Sumber logam arsen.


14. Stibnit, Sb2S3
Tempat Ditemukan : Sambas, Kalimantan Barat
Sistem Cristal : Ortorombik.
Warna : Abu-abu timbal sampai kehitaman
Goresan : Abu-abu timbal sampai kehitaman
Belahan dan pecahan : {010} sempurna
Kekerasan : 2
Berat jenis : 4,52 – 4,63
Genesis : Terbentuk melalui proses hidrotermal bertemperatur rendah, terdapat dalam urat-urat atau deposit pengganti ; dapat juga terbentuk di lingkungan mata air panas. Sering berasosiasi dengan realgar, orpiment, galena, markasit, pirit, sinabar, kalsit, ankerit, barit, kalsedon, atau kuarsa
Manfaat : Sumber logam antimon


15. Arsenopirit, FeAsS
Tempat Ditemukan : Jerman
Sistem Cristal : Monoklin .
Warna : Putih-perak sampai abu-abu baja
Goresan : Hitam keabuan
Belahan dan pecahan : {101} tidak sempurna ; tidak rata
Kekerasan : 5,5, - 6
Berat jenis : 6,07
Genesis : Terbentuk melalui proses hidrotermal bertemperatur tinggi sampai menengah ; dan berasosiasi dengan bijih timah dan tungsten (pada deposit hidrotermal bertemperatur tinggi), bijih perak dan tembaga, galena ,sfalerit, pirit, dan khalkopirit. Dijumpai juga dalam urat-urat kuarsa-emas, urat-urat kasiterit, pada deposit metamorfisme kontak, pegmatite, dan tersebar dalam batugamping kristalin.
Manfaat : Sumber utama logam arsen


16. Korundum, Al2O3
Tempat Ditemukan : Peeks Hill, New York
Sistem Cristal : Heksagonal
Warna : Biru (safir, merah muda sampai merah-darah (rubi), juga kuning, coklat-kuning, hijau, merah lembayung sampai lembayung ; dapat juga tak berwarna.
Goresan : Putih.
Belahan dan pecahan : tak ada
Kekerasan : 9
Berat jenis : 4,0 – 4,1
Genesis : Terbentuk pada batuan metamorf, yaitu sebagai mineral asesori dalam batugamping kristalin, sekis-moka dan genes. Dapat juga dalam lingkungan batuan beku, khususnya sienit dan sienit nefelin ; dalam pegmatit, retas lamprofir, dan pada lingkungan sedimen – yaitu dalam pasir, kerikil-kerakal di sungai. Sering berasosiasi dengan khlorit, mika, olivin, serpentin, magnetit, spinel, kianit, dan diaspor.
Manfaat : Dibuat batupermata dan pengasah.


17. Hematit, Fe2O3
Tempat Ditemukan : Ciater, Jawa Barat
Sistem Cristal : Heksagonal.
Warna : Abu-abu baja, atau coklat kemerahan sampai hitam.
Goresan : Merah atau coklat kemerahan
Belahan dan pecahan : Tak ada; tidak rata.
Kekerasan : 5,5 – 6,5
Berat jenis : 5,26
Genesis : Dapat terbentuk pada lingkungan batuan beku, hidrotermal temperatur tinggi dan metamorfisme kontak; juga dalam lingkungan sedimen.
Manfaat : sumber logam besi; juga digunakan sebagai bubuk pigmen, oker merah dan bubuk pengilap. Kristalnya yang berwarna hitam dapat dibuat batupermata.


18. Psilomelan,( Ba, H2O )2Mn5O10
Tempat Ditemukan : Kliripan, Jawa Tengah
Sistem Cristal : Monoklin.
Warna : Hitam besi sampai abu-abu baja gelap
Goresan : Hitam kecoklatan sampai hitam.
Belahan dan pecahan : Tak-ada
Kekerasan : 5 – 6
Berat jenis : 4,71
Genesis : Terbentuk pada lingkungan sedimen oksidat ; sebagai mineral sekunder yang sering berasosiasi dengan pirolusit, gutit, limonit, dan hausmanit. Dapat pula sebagai deposit residu, dari hasil pelapukan silikat atau karbonat mengandung mangan ; juga sebagai massa konkresi dalam lempung, dan dalam deposit danau atau rawa.
Manfaat : Sumber logam mangan.


19. Pirolusit, MnO2
Tempat Ditemukan : Tasik, Jawa Barat
Sistem Cristal : Tetragonal.
Warna : abu-abu baja terang sampai gelap, sampai abu-besi, Madang-kadang kebiruan.
Goresan : hitam
Belahan dan pecahan : {110} sempurna ; tidak rata.
Kekerasan : 6-6,5 (cristal-kristal), 2-6 (material masiv)
Berat jenis : 4,75
Genesis : terbentuk pada lingkungan redimen oksidat; sering ditemukan sebagai deposit rawa(bog), danau, atau depoisit laut dangkal; pada mintakat oksidasi dari statu deposit bijih, atau batuan yang mengandung mangan.
Manfaat : sumber logam mangan


20. Kasiterit, SnO2
Tempat Ditemukan : Bangka
Sistem Cristal : Tetragonal .
Warna : Kuning, atau coklat, kemerahan sampai hitam kecoklatan, dapat juga putih (jarang).
Goresan : Putih, keabuan, atau kecoklatan.
Belahan dan pecahan : {100} sempurna, {110} tidak sempurna ; konkoidal.
Kekerasan : 6 – 7
Berat jenis : 6,8 – 7,1
Genesis : Terbentuk melalui proses hidrotermal temperatur tinggi dan terdapat dalam urat-urat, atau proses metamorfisme yang secara genetic berhubungan dengan batuan silica. Kasiterit sering berasosiasi dengan wolframit, turmalin, topas, kuarsa, fluorit, arsenopirit, muskovit, mika-Li, bismulinit, bismut dan molibdenit. Dapat juga terbentuk pada retas pegmatit, dan pada lingkungan sedimen sebagai mineral alluvial.
Manfaat : sumber logam timah ( putih )


21. Manganit, MnO(OH)
Tempat Ditemukan : Padang, Sumatera Barat
Sistem Cristal : Monoklin.
Warna : Abu-abu baja gelap sampai hitam-besi.
Goresan : Coklat kemerahan sampai hitam.
Belahan dan pecahan : {010} sangat sempurna, {110} dan {001} kurang sempurna
Kekerasan : 4
Berat jenis : 4,33
Genesis : Terbentuk melalui proses hidrotermal temperatur rendah, terdapat dalam urat-urat, dan berasosiasi dengan barit, kalsit, siderit, dan hausmanit. Dijumpai juga dalam deposit yang terbentuk oleh aktivitas air meteorik, dan terdapat bersama pirolusit, gutit, psilomelan, dan mineral-mineral mangan yang lain.
Manfaat : Mineral bijih sumber logam mangan.


22. Fluorit, CaF2
Tempat Ditemukan : Garut, Jawa Barat
Sistem Cristal : Isometrik.
Warna : Sangat bervariasi, dapat tak-berwarna, kuning anggur, hijau, biru kehijauan, biru lembayung, putih, abu-abu, biru-langit, hitam keniruan, atau coklat.
Goresan : Putih.
Belahan dan pecahan : {111} sempurna
Kekerasan : 4
Berat jenis : 3,18
Genesis : Terbentuk melalui proses hidrotermal, dan dijumpai dalam urat-urat, baik sebagi mineral utama maupun sebagai mineral geng bersama mineral-mineral bijih metalik, khususnya timbal dan perak. Umumnya dalam dolomit dan batugamping ; dan dapat pula terbentuk pada lingkungan batuan beku dan pegmatit. Berasosiasi dengan beberapa mineral, antara lain kalsit, dolomit, gipsum, selestit, barit, kuarsa, galena, sfalerit, kasiterit, topas, turmalin, dan apatit.
Manfaat : Dipakai dalam industri kimia, peleburan besi baja, gelas, Kaca-serat ( fiberglass ) dan tembikar.


23. Kalsit , CaCo3
Tempat Ditemukan : Kliripan, Yogyakarta
Sistem Cristal : Trigonal.
Warna : Tak-berwarna sampai putih, sering diwarnai oleh warna abu-abu, merah, hijau, biru, kuning, bahan coklat sampai hitam bila tidak murni.
Goresan : Putih sampai keabuan.
Belahan dan pecahan : {10 11} sempurna.
Kekerasan : 3
Berat jenis : 2,71
Genesis : Dapat terbentuk pada lingkungan batuan beku, sedimen, metamorf dan melalui proses hidrotermal. Merupakan mineral utama dalam batugamping, atau pulam/marmer (marble). Dapat juga diendapkan di sekitar/di sekeliling mata air, atau aliran air, berupa travertin, tufa, atau sinter-gamping.
Manfaat : Kalsit merupakan sumber senyawa CaO, yang digunakan untuk membuat semen, campuran adulan semen, pupuk, kapur tohor, industri kimia, industri besi baja dan pembenah tanah.


24. Magnesit, MgCO3
Tempat Ditemukan : Lalangsilawo, Sulawesi
Sistem Cristal : Trigonal.
Warna : Tak-berwarna, putih, putih-keabuan, dan kekuningan sampai coklat.
Goresan : Putih.
Belahan dan pecahan : Sempurna pada {10 11}
Kekerasan : 3,5 – 5
Berat jenis : 3,0 – 3,2
Genesis : Dapat terbentuk pada lingkungan sedimen ; secara hidrotermal, sehingga terdapat dalam urat-urat, atau sebagai hasil ubahan pada batuan yang banyak mengandung silikat kalsium (serpentin, olivin, dan piroksen) yang disebabkan oleh air karbonat.
Manfaat : Sumber senyawa MgO yang digunakan dalam pembuatan batubara tahan api, industri kimia, dan sebagai sumber logam magnesium.


25. Siderit, FeCO3
Tempat Ditemukan : Antigonis, Nova Scotia
Sistem Cristal : Trigonal.
Warna : Coklat kekuningan dan coklat keabuan sampai coklat dan coklat kemerahan, dapat juga abu-abu, abu-abu kekuningan , atau abu-abu kehijauan.
Goresan : Putih.
Belahan dan pecahan : Sempurna pada {10 11}.
Kekerasan : 3,5 – 4
Berat jenis : 3,96 untuk FeCO3 murni, dan menjadi rendah dengan hadirnya Mn2+ dan Mg.
Genesis : Terbentuk pada lingkungan sedimen, dan terdapat sebagai lapisan-lapisan yang sering berasosiasi dengan lapisan lempung, serpih, atau batubara. Dapat pula terbentuk melalui proses hidrotermal dan terdapat dalam urat-urat, atau terbentuk sebagai pegmatit. Sering berasosiasi dengan bijih-bijih metal yang mengandung mineral-mineral perak seperti pirit, khalkopirit, tetrahedrit, dan galena.
Manfaat : Sumber logam besi


26. Dolomit, CaMg(CO3)2
Tempat Ditemukan : Essex.Co, New York
Sistem Cristal : Trigonal.
Warna : Tak-berwarna, putih, abu-abu, atau kehijauan, yang menjadi coklat kekuningan, atau coklat, dengan semakin meningkatnya kadar Fe2+, dapat juga merah muda, atau merah-mawar
Goresan : Putih.
Belahan dan pecahan : Sempurna pada {10 11}
Kekerasan : 3,5 – 4
Berat jenis : 2,85.
Genesis : Dapat terbentuk pada lingkungan sedimen, melaluia proses hidrotermal dan terdapat dalam urat-urat, serta berasosiasi dengan fluorit, barit, kalsit, siderit, kuarsa dan mineral-mineral bijih metalik. Dapat juga terbentuk secara metamorfisme.
Manfaat : Sumber logam magnesium, atau kalsium, dan senyawa magnesium oksida yang digunakan untuk membuat batubara tahan api.dapat juga dibuat batu hias.


27. Witerit, BaCO3
Tempat Ditemukan : Inggris
Sistem Cristal : Ortorombik.
Warna : Tak-berwarna sampai seperti susu, putih, atau keabuan, dapat juga berwarna kuning, coklat, atau hijau.
Goresan : Putih.
Belahan dan pecahan : Jelas pada {010}
Kekerasan : 2 – 3,5
Berat jenis : 4,3
Genesis : Witerit adalah mineral yang jarang, terbentuk secara, hidrotermal temperatur rendah, terdapat dalam urat-urat bersama barit dan galena.
Manfaat : Sumber minor unsur barium.


28. Malakhit, Cu2(CO3)(OH)2
Tempat Ditemukan : Broken Hill, New South Wales, Australia
Sistem Cristal : Monoklin.
Warna : Hijau cemerlang.
Goresan : Hijau pucat.
Belahan dan pecahan : {201} sempurna, {010}baik ; tak-rata
Kekerasan : 3,5 – 4
Berat jenis : 3,9 – 4,03
Genesis : Malakhit adalah mineral tembaga sekunder, umumnya terdapat dalam mintakat oksidasi atas pada suatu deposit bijih tembaga, khususnya pada derah yang berbatugamping, dan sering berasosiasi dengan azurit, limonit, kalsit, kalsedon, khrisokola, dan mineral-mineral sekunder tembaga, timbal, atau seng, dan lainnya.
Manfaat : Mineral bijih sumber minor logam tembaga, digunakan juga sebagai batu-hias, dan batupermata.


29. Barit, BaSO4
Tempat Ditemukan : Kalimantan Barat
Sistem Cristal : Ortorombik.
Warna : Tak-berwarna sampai putih ; dapat pula kuning, coklat, kemerahan, abu-abu, kehijauan, atau biru.
Goresan : Putih.
Belahan dan pecahan : {001} dan {210} sempurna.
Kekerasan : 3 – 3,5
Berat jenis : 4,5
Genesis : Terbentuk melalui proses hidrotermal temperatur rendah sampai menengah, dan terdapat dalam urat-urat bersama bijih perak, timbal, tembaga, kobalt, mangan, antimon. Dapat juga berasosiasi dengan fluorit, kalsit, siderit, dolomit dan kuarsa
Manfaat : Digunakan sebagai van untuk membuat lumpur bor ( drilling mud ) yang dipakai pada pemboranminyak bumi dan gas.


30. Anhidrit, CaSO4
Tempat Ditemukan : Nants, Nova Scotia
Sistem Cristal : Ortorombik.
Warna : Tak-berwarna sampai kebiruan atau lembayung (violet), kadangkala abu-abu sampai abu-abu gelap.
Goresan : Putih sampai putihkeabuan.
Belahan dan pecahan : {010}sempurna,{100} hampir sempurna dan {001} baik.
Kekerasan : 3 – 3,5
Berat jenis : 2,89 – 2,98
Genesis : Terbentuk pada lingkungan sedimen, dan sering berasosiasi dengan gipsum, batugamping, dolomit, dan garam-garam. Dapat juga terbentuk melalui proses hidrotermal, dan terdapat sebagai mineral geng dalam urat-urat metaliferus.
Manfaat : Sebagai pembenah tanah dan van untuk membuat semen Pórtland.


31. Gipsum, CaSO42H2O
Tempat Ditemukan : Besuku, Jawa Timur
Sistem Cristal : Monoklin.
Warna : Tak-berwarna dan transparan, dapat pula putih, abu-abu,dan kekuningan bila masiv.
Goresan : Putih
Belahan dan pecahan : {010} sempurna ; {100} dengan permukaan konkoidal, dan {011} dengan pecahan yang fibrus.
Kekerasan : 2
Berat jenis : 2,32
Genesis : Terbentuk dalam lingkungan sedimen, dan sering berselingan dengan batugamping, serpih, batupasir, lempung dan garam batuan. Dapat pula ditemukan dalam urat-urat metalik sebagai mineral geng.
Manfaat : Digunakan dalam industri konstruksi, sebagai pembenah tanah dan pupuk.


32. Wolframit, (Fe, Mn)WO4
Tempat Ditemukan : Pengan, Bangka
Sistem Cristal : Monoklin.
Warna : Hitam-kecoklatan sampai hitam besi.
Goresan : Coklat kemerahan sampai hitam kecoklatan.
Belahan dan pecahan : {010}sempurna.
Kekerasan : 4 – 4,5
Berat jenis : 7,1 – 7,5 ; membesar seiring dengan naiknya kandungan Fe.


Genesis : Dapat terbentuk pada lingkungan pegmatit yang berasosiasi dengan batuan intrusif granitik ; hidrotermal temperatur tinggi, dijumpai dalam urat-urat, dan berasosiasi dengan pirotit, pirit, khalkosit, dan bismutinit. Dapat pula terdapat dalam deposit metamorfisme kontak dan deposit alluvial.
Manfaat : Sumber utama Logam tungsten ( wolfram ).


33. Monasit, (Ce, La, Y, Th)PO4
Tempat Ditemukan : Transvall, Afrika Selatan.
Sistem Cristal : Monoklin.
Warna : kekuningan, atau coklat kemerahan sampai coklat.
Goresan : hampir putih.
Belahan dan pecahan : {100} jelas.
Kekerasan : 5-5,5.
Berat jenis : 4,6-5,4.
Radioactivitas : Radioaktif.
Genesis : Terbentuk pada lingkungan batuan beku, yaitu sebagai mineral asesori dalam granit, sienit ; pada lingkungan pegmatit, dan sebagai mineral rombakan berbentuk pasir dalam lingkungan redimen.berasosiasi dengan zirkon, xenotim, magnetit, apatit, ilmenit, rutil dan kolumbit.
Manfaat : Sumber torium ( Th, eleven radioaktif ) dan torium oksida.


34. Kuarsa, SiO2
Tempat Ditemukan : Sampit, Kalimantan Tengah
Sistem Cristal : Trigonal.
Warna : Tak-berwarna sampai putih, kadang-kadang berwarna karena pengotoran.
Goresan : Putih.
Belahan dan pecahan : Tak-ada ; konkoidal.
Kekerasan : 7
Berat jenis : 2,65
Genesis : Dapat terbentuk pada lingkungan batuan beku, pegmatit, hidrotermal, metamorfik dan sedimen.
Manfaat : Dipakai dalam industri konstruksi, sebagai flux dalam industri metalurgi, pembuatan gelas, keramik, refraktori, amplas, filter, batupermata dan optik.


35. Opal, SiO2.nH2O
Tempat Ditemukan : Kebumen, Jawa Tengah
Sistem Cristal : Tak-ada.
Warna : Tak-berwarna, atau putih ; ada juga abu-abu, coklat, atau merah, yangbiasanya disebabkan oleh kotoran berbutir halus.
Goresan : Putih.
Belahan dan pecahan : Tak-ada ; konkoidal.
Kekerasan : 5,5 – 6,5
Berat jenis : 2,0 – 2,2
Genesis : Terbentuk sebagai deposit mata air panas pada kedalaman yang dangkal, deposit air meteorik, atau deposit larutan hipogen temperatur rendah. Sering mengisi rekah-rekah atau rongga-rongga pada batuan, dan mengganti sel-sel kayu. Dapat juga dihasilkan oleh bunga-karang. (sponge), radiolaria dan diatomea dari sekresinya yang berupa silica.
Manfaat : Dibuat batupermata, sedangkan diatomit digunakan untuk membuat amplas, filler, bubuk filtrasi dan isolator.


36. Nef elin, (Na, K)AlSiO4
Tempat Ditemukan : New York
Sistem Cristal : Hexagonal.
Warna : Tak berwarna sampai putih, terkadang abu-abu, coklat, kehijauan, kemerahan, atau kekuningan.
Goresan : Putih
Belahan dan pecahan : {10 10} jelas.
Kekerasan : 6
Berat jenis : 2,55-2,65
Genesis : Terbentuk pada lingkungan batuan beku plutonio dan Vulkanik, juga dalam pegmatit yang berasosiasi dengan sienit nefelin.
Manfaat : Nefelin bebas besi (nefelin murni) digunakan dalam pembuatan gelas dan keramik, juga dalam industri kulit, textil, kayu, karet dan minyak.


37. Kaolinit, Al4Si4O10(OH)8
Tempat Ditemukan : Flores, NTT
Sistem Cristal : Triklin.
Warna : Putih, kadangkala berwarna coklat, atau abu-abu karena pengotoran.
Goresan : Putih
Belahan dan pecahan : {001} sempurna, tetapi tidak terlihat dengan mata biasa karena berukuran Sangat kecil.
Kekerasan : 2
Berat jenis : 2,6
Genesis : Terbentuk sebagai hasil dekomposisi aluminosilikat, khususnya feldspar, baik oleh aktivitas pelapukan, atau hidrotermal.Suatu deposit yang besar dapat terbentuk dari alterasi hidrotermal pada feldspar yang terdapat dalam granit, atau pegmatit granit; atau oleh proses erosi terhadap granit terkaolinisasi, yang mengendapkan kaolinit.
Manfaat : Digunakan dalam industri yertas, karet, keramik, tembikar dan farmasi.


38. Muskovit, KAl2(AlSi3O10)(OH)2
Tempat Ditemukan : Sulawesi Selatan
Sistem Cristal : Monoklin .
Warna : tak berwarna, atau hijau pucat, abu-abu, atau coklat pada lembaran tipis.
Goresan : Putih.
Belahan dan pecahan : {001} sempurna.
Kekerasan : 2-2,5
Berat jenis : 2,8-2,9
Genesis : Dapat terbentuk pada lingkungan batuan beku, pegmatit ( dalam pegmatit granit ), lingkungan metamorfik berderajat rendah dan menengah ( dalam sekis dan genes ), ata upada lingkungan redimen.
Manfaat : Dipakai dalam pembuatan alat-alat listrik, yertas dinding, bahan isian (filter), minyak pelumas dan material tahan panas.


39. Turmalin, Na(Mg,Fe)3Al6(BO3)3(Si6O18)(OH)4
Tempat Ditemukan : Bengkayang, Kalimantan Barat.
Sistem Cristal : Trigonal.
Warna : Biasanya hitam, dapat juga coklat, biru gelap, tak berwarna (jenis yang bebas Fe), merah muda, hijau, dan biru untuk varitas yang mengandung litium.
Goresan : Putih
Belahan dan pecahan : {11 20} dan {10 11} jelek ; konkoidal.
Kekerasan : 7-7,5
Berat jenis : 3,0-3,2. ; membesar seiring dengan bertambahnya Fe
Genesis : Terbentuk pada pegmatit, dan terdapat dalam pegmatit granit.dijumpai juga sebagai mineral asesori dalam batuan metamorf, khususnya pada sekis dan genes.Turmalin coklat kaya –Mg dapat dijumpai dalam batugamping termetamorfisme dan dalam urat-urat metaliferus bertemperatur tinggi.
Manfaat : Dibuat batupermata dan dipakai dalam industri sehubungan dengan sifat piezoelektriknya.


40. Olivin, (Mg,Fe)2SiO4
Tempat Ditemukan : Cipanas, Garut, Jawa Barat
Sistem Cristal : Ortorombik.
Warna : Biasanya hijau-pudar (olive-green), dapat juga putih dan cokelat sampai hitam.
Goresan : Putih atau abu-abu.
Belahan dan pecahan : {010} tak jelas ; konkoidal.
Kekerasan : 6,5-7
Berat jenis : 3,27-4,37
Genesis : Terbentuk pada lingkungan batuan beku, khususnya dalam lingkungan batuan beku basa dan ultrabasa.Dapat menjadi penyusun utama dalam batuan beku ultrapasa, yaitu dunit.
Manfaat : Dibuat batupermata, khususnya varitas hijau cerah- disebut juga peridot, dan dibuat pasir refraktori yang dipakai dalam industri pengecoran.


( Sumber : http://www.geofacts.co.cc/2009/04/deksripsi-beberapa-mineral.html )

Selasa, 09 November 2010

PENGERTIAN AZIMUTH, BEARING DAN TREND

1. Sudut(Azimuth)
     Azimuth adalah sudut antara sasaran terhadap kutub magnetik bumi (sudut kompas) sedangkan Back Azimuth adalah kebalikan dari Azimuth.
Menentukan arah azimuth dan cara menentukan lokasi
     Arah yang dimaksudkan disini adalah arah dari titik tempat berdiri ke tempat yang dibidik atau dituju. Titik tersebut dapat berupa puncak bukit, patok yang sengaja dipasang, dan lain-lain. Untuk mendapatkan hasil pembacaan yang baik, dianjurkan mengikuti tahapan sebagai berikut :
  1. Kompas dipegang dengan tangan kiri setinggi pinggang.
  2. Kompas dibuat horizontal (dengan bantuan “mata lembu”) dan dipertahankan demikian selama pengamatan.
  3. Cermin diatur, terbuka kurang lebih 1350 menghadap ke depan dan sighting arm dibuka horizontal dengan peep sight ditegakkan.
  4. Badan diputar sedemikian rupa sehingga titik atau benda yang dimaksud tampak pada cermin dan berimpit dengan ujung sighting arm dan garis tengah dan garis tengah pada cermin. Sangat penting diingat bahwa : bukan hanya tangan dengan kompas yang berputar tetapi seluruh badan.
  5. Baca jarum utara kompas, setelah jarum tidak bergerak. Hasil bacaan adalah arah yang dimaksud.
     Hasil pembacaan arah dapat dipakai untuk menentukan lokasi dimana pengamat berdiri, dengan dibantu peta topografi. Pembidikan dapat dilakukan ke beberapa obyek yang lokasinya diketahui dengan pasti di peta (biasanya tiga obyek) kemudian arah-arah tersebut ditarik pada peta dengan menggunakan busur derajat dan segitiga. Titik potong ketiganya, yang bila pembacaannya tepat, akan hanya berpotongan di satu titik. Titik tersebut adalah titik dimana pengamat berdiri (lihat juga Gambar I).

2.Arah penujaman (Trend)
     Arah penujaman (Trend) adalah jurus dari bidang vertikal yang melalui garis dan menunjukan arah penunjaman garis tersebut ( hanya menunjukkan suatu arah tertentu).
a.Pengukuran struktur garis yang mempunyai Trend.
     Adapun yang termasuk struktur garis ini adalah gores garis pada bidang sesar, arah arus pembentukan struktur sedimen dan garis sumbu lipatan.
b.Pengukuran Arah Trend.
1.Tempelkan alat Bantu (buku lapangan "Dipboard') pada posisi tegak dan sejajar dengan struktur garis yang akan diukur.
2.Tempelkan sisi "W' atau "E" kompas pada posisi kanan atau kiri alat Bantu dengan visir kompas ("Sighting Arm") mengarah kepenujaman struktur garis tersebut.
3.Levelkan/horisontalkan kompas (Nivo Mata Sapi, dalam keadaan horisontal), make harga yang ditunjuk oleh jarum utara, kompas adalah harga arah penunjamannya ("Trend").

3.Arah kelurusan (Bearing)
     Arah kelurusan (Bearing) adalah jurus dari bidang vertikal yang melalui garis tetapi tidak menunjukan arah penunjaman garis tersebut (menunjukkan arah – arah dimana, salah satu arahnaya merupakan sudut pelurusnya). 
a. Pengukuran Bearing.
1. Arah visir kompas sejajar dengan unsur-unsur kelurusan struktur garis yang akan diukurmisalnya sumbu memanjang fragmen breksi sesar.
2. Levelkan kompas (nivo mata sapi dalam keadaan horisontal), dan membuat harga yang ditunjuk oleh jarum utara kompas adalah harga arah "Bearing"-nya.


DAFTAR PUSTAKA
Sachrul Iswahyudi. Melihat Sesar Lembang dari gunung Batu. http://sachrul.blogspot.com/2010/05/melihat-sesar-lembang-dari-gunung-batu.html. Tanggal akses: 8 November 2010.
Henry Nainggolan. http://geophenry.blogspot.com. Tanggal akses: 8 November 2010.
Romi Fadly. Navigasi darat. 3 April 2010. http://blog.unila.ac.id/romi9eo/2010/04/03/navigasi-darat. Tanggal akses: 8 November 2010.
Gabro. Kompas geologi dan cara penggunaannya. http://geo-tek.blogspot.com/2009/05/kompas-geologi-dan-cara-penggunaannya.html. Tanggal akses: 8 November 2010.
Tommy. kompas geology. http://tommy-steven.blogspot.com/2010/05/kompas-geology.html. Tanggal akses: 8 November 2010.
pusat penelitian dan pengembangan geologi kelautan. 9 September 2009. http://www.mgi.esdm.go.id/content/bentuk-geomorfologi-dasar-laut-pada-tepian-lempeng-aktif-di-lepas-pantai-barat-sumatera-dan-. Jakarta. Tanggal akses: 8 November 2010.

Minggu, 07 November 2010

GEOLOGI STRUKTUR


BAB I
PENDAHULUAN

1.1  Latar Belakang
Geologi struktur adalah studi mengenai distribusi tiga dimensi tubuh batuan dan permukaannya yang datar ataupun terlipat, beserta susunan internalnya.
Geologi struktur mencakup bentuk permukaan yang juga dibahas pada studi geomorfologi, metamorfisme dan geologi rekayasa. Dengan mempelajari struktur tiga dimensi batuan dan daerah, dapat dibuat kesimpulan mengenai sejarah tektonik, lingkungan geologi pada masa lampau dan kejadian deformasinya. Hal ini dapat dipadukan pada waktu dengan menggunakan kontrol stratigrafi maupun geokronologi, untuk menentukan waktu pembentukan struktur tersebut.
Secara lebih formal dinyatakan sebagai cabang geologi yang berhubungan dengan proses geologi dimana suatu gaya telah menyebabkan transformasi bentuk, susunan, atau struktur internal batuan kedalam bentuk, susunan, atau susunan intenal yang lain. Untuk memahami struktur geologi yang ada dan bagaimana proses terjadinya maka sangatlah perlu diadakan pengamatan secara langsung. Hal ini akan memudahkan dalam pemahaman serta dapat mengetahui secara langsung struktur geologi yang ada.

1.2  Maksud dan Tujuan
Maksud dari pelaksanaan kegiatan Praktikum Geologi Struktur Program Studi Geologi Pertambangan (Diploma III) Fakultas Teknik, Universitas Kutai Kartanegara, ini, meliputi :
  • Melatih mahasiawa dalam mengenali struktu-struktur yang ada.
  • Untuk melatih dalam menganalisa persoalan - persoalan geologi struktur dengan melihat bentuk rill dilapangan.
  • Untuk mahasiswa, / mahasiwi terampil dan mahir dalam, menggunakan peralatan geologi dilapangan.

Adapun tujuan diadakan praktikum ini, yaitu
  • Agar melihat secara, langsung bentuk kekar dan lipatan yang rill dilapangan.
  • Untuk mengetahui arah penyebaran, stretigrafi, formasi, geometri unsur struktur, struktur garis, struktur bidang, kedalaman dan ketebalan batuan.
  • Untuk menganalisa, kekar dan lipatan yang menggunakan mitode Roset (kipas), histrogram dan lainnya.


BAB II
PEMBAHASAN

2.1 Geometri Unsur Struktur
Unsur-unsur struktur secara geometris pada dasarnya hanya terdiri dari dua unsur geometris yaitu :
1)      Geometris Bidang/ Struktur Bidang
  • Bidang perlapisan
  • Kekar
  • Sesar
  • Foliasi
  • Sumbu lipatan, dll.
2)      Geometris Garis/ Struktur Garis
·         Gores-garis
·         Perpotongan dua bidang
·         Liniasi, d1l.
Pemecahan masalah-masalah yang berhubungan dengan geometri struktur bidang dan struktur garis seperti :
  • Masalah besaran arah dan sudut, jarak dan panjang dari struktur bidang dan struktur garis, misalnya ; menentukan panjang dari segmen garis, sudut antara dua garis, sudut antara dua bidang, sudut antara gars dan bidang, jarak titik terhadap bidang, jarak titik terhadap garis.
Kelemahan dari metode ini adalah ketelitiannya sangat tergantung pada faktor-faktor :
  • Skala penggambaran, ketelitian alas gambar dan tingkat keterampilan sipengambar.Namun dibandingkan dengan metode-metode proyeksi yang lain (proyeksi perspektif dan proyeksi seterografi), metode ini lebih cepat untuk memecakan masalah struktur bidang dan struktur garis, karena secara langsung berhubungan dengan kenampakan tiga dimensi, sehingga mullah dipahami.
  • Didalam metode grafis ini, struktur bidang dan struktur garis digambarkan pada bidang proyeksi (bidang horisontal dan vertikal) dengan cara menarik garis¬-garis proyeksi yang tegak lurus terhadap bidang proyeksi dan saling sejajar satu sama lain.
Definisi istilah-istilah dalam proyeksi orothogmfi
Ø  Image Plane (IP) adalah bidang yang tegak lurus garis pandang, terletak antara mata si pengamat dengan objek yang akan digambar.
Ø  Line Of Sight (LS) adalah suatu garis yang berasal dari mata si pengamat sampai kesuatu titik tertentu dalam obyek, dan sifatnya saling sejajar.
Ø  Horizontal Plane (HP) adalah bidang khayal yang kedudukannya horisontal dan merupakan tempat kedudukan titik-titik yang mempunyai ketinggian sama Garis proyeksi dari suatu titik sifatnya akan vertikal dan tegak lurus terhadap bidang ini.
Ø  Front Plane (FP) adalah bidang khayal yang kedudukannya vertikal dan tegak lurus terhadap bidang horisontal. Garis proyeksi yang ditarik dari suatu titik sifatnya horisontal dan tegak lurus terhadap bidang ini.
Ø  Profile Plane (PP) adalah bidang khayal yang kedudukannya vertikal dan tegak lurus terhadap "Horizontal Plane" (HP) dan "Front Plane" (FP). Garis vertikal yang ditarik dari suatu titik, sifatnya horisontal dan tegak lurus terhadap bidang ini.
Ø  Folding Line (FL) adalah garis khayal yang merupakan perpotongan dua bidang proyeksi. Garis ini berfungsi sebagai sumber putar bidang proyeksi vertikal sehingga kedudukannya menjadi horisontal. Prinsip ini merupakan salah satu dasar dari proyeksi orthografi yang merubah gambaran tiga dimensi menjadi dua dimensi.
2.2. Struktur Bidang
Struktur bidang dalam geologi, struktur dapat dibedakan menjadi "Struktur Bidang Rill " dan "Struktur Bidang Semu ".
  1. Struktur bidang riil artinya bentuk dan kedudukan dapat diamati secara langsung dilapangan, antara lain adalah
Ø  Bidang perlapisan.
Ø  Bidang ketidakselarasan.
Ø  Bidang sesar.
Ø  Foliasi.
Ø  Bidang sayap lipatan. Bidang yang disebut terakhir ini sebenarnya merupakan kedudukan bidang yang terlipat.
  1. Struktur bidang semu artinya bentuk dan kedudukannya hanya bisa diketahui atau didapatkan dari hasil analisa struktur bidang riil yang lain, contohnya adalah :
*      Bidang poros lipatan.
Dikaitkan dengan penggolongan struktur menurut waktu pembentukannya, maka dibedakan menjadi struktur bidang primer dan struktur bidang sekunder. Bidang-bidang yang termasuk dalam struktur bidang primer adalah bidang perlapisan, bidang foliasi bidang rekah kerut ( Mud Crack ), bidang kekar kolom ( Colomnar Joint ) pada batuan beku, dan lain sebagainya. Sedangkan yang termasuk dalam struktur bidang sekunder adalah bidang kekar, bidang sesar, bidang sayap lipatan.
Pada umumnya struktur bidang dinyatakan istilah-istilah, yaitu
  1. Jurus ( Strike)
  2. Kemiringan (Dip).

  1. Definisi Istilah-istilah Struktur Bidang.
a.       Jurus (Strike) adalah Arah dan gars horizontal yang merupakan perpotongan antara bidang yang bersangkutan dengan bidang horizontal.
b.      Kemiringan (Dip) adalah Sudut kemiringan terbesar yang dibentuk oleh bidang miring dengan bidang horizontal dan diukur tegak lurus terhadap jurus.
c.       Kemiringan Semu (Apparent Dip) adalah Arah tegak lurus jurus sesuai dengan arah miringnya bidang yang bersangkutan dan diukur dan arah utara.
Keterangan :
A – L : Struktur garis pada bidang ABCD
A – K : Arah Penunjaman (Trend)
A-K / K-A : Arah Kelurusan (Bearing) = Azimuth NAK
β : Penunjaman (Plunge)
т : Rake (Pitch)
Gambar 2.1. Proyeksi Bearing dan Plunge
2.2.2        Cara Penulisan ( Notasi ) dan Simbol Struktur Bidang
Untuk menyatakan kedudukan suatu struktur bidang secara tertulis agar dengan mudah dan cepat dipahami, dibutuhkan suatu cara penulisan dan simbol pada pets geologi.
Penulisan ( Notasi ) struktur bidang dinyatakan dengan :
- Jurus / Kemiringan
- Besar Kemiringan, arah kemiringan
a. Jurus / Kemiringan
• Sistem Azimuth, hanya mengenal satu tulisan yaitu N X°E/Y°, Besarnya X° antara 0° – 360° dan besarnya Y° antara 0° – 90°.
• Sistem Kwadran , penulisan tergantung kepada posisi kwadran yang diinginkan sehingga mempunyai beberapa cara penulisan, misalnya:
- Sistem Azimuth, N 145° E/30°, maka menurut sistem kwadrannya adalah : N 35° W/30° SW atau S 35° E/30° SW.
- Sistem Azimuth , N 90° E/45°, maka menurut sistem kwadrannya adalah : N 90° E/45° S atau N 90° W/45° S atau N 90° E/45° S atau S 90° W/45° S.
b. Besar Kemiringan, Arah Kemiringan (Dip,Dip Direction)
Misalnya : Sistem azimuth N 145°E/30°, maka penulisan berdasarkan sistem "Dip, Dip deriction ", adalah : 30°, N 235°E. Penggambaran Simbol Struktur Bidang :
    1. Garis jurus hasil pengukuran diplot dengan tepat sesuai arah pembacaan kompas di titik lokasi dimana struktur bidang tersebut diukur.
    2. Tanda arah kemiringan digambarkan pada tengah-tengah den tegak lurus garis jurus searah jarum jam atau harga jurus ditambah 90° searah jarum jam. Panjang tanda kemiringan ini kurang lebih sepertiga panjang garis jurus.
    3. Tulis besar kemiringan pada ujung tanda kemiringan.
2.2.3        Cara Mengukur Struktur Bidang dengan Kompas Geologi.
*      Pengukuran Jurus
Bagian sisi kompas (sisi "E") ditempelkan pada bidang yang diukur. Kedudukankompas dihorisontalkan, ditunjukkan oleh posisi level dari nivo "Mata Sapi" ( Bull's Eye Level ), maka hargayang ditunjuk oleh jarum utara kompas adalah harga jurus bidang yang diukur. Benlah tanda garis pada bidang tersebut sesuai dengan arah jurusnya.
*      Pengukuran Kemiringan.
Kompas pada posisi tegaktempelkan sisi 'W' kompas pada bidang yang diukur dengan posisi yang tegak lurus jurus pada garis jurus yang telah dibuat pada butir (1). Kemudian Dinometer dieter sehingga gelembung udaranya tepat berada ditengah (Posisi Level). Harga yang ditunjukkan oleh penunjuk pada skala klinometer adalah besarnya sudut kemiringan dari bidang yang diukur.
*      Pengukuran Arah Kemiringan.
Tempelkan sisi "S" kompas pada bidang yang diukur. Posisikan kompas, sehingga. horizontal (nivo "mata lembu" level), baca angka yang ditunjuk oleh jarum utara kompas. Harga ini merupakan arah kemiringan (dip direction) dari bidang yang diukur.
2.2.4        Aplikasi Metode Grafis I untuk Struktur Bidang
Aplikasi yang diuraikan disini meliputi pemecahan masalah-masalah struktur bidang, antara lain :
1. Menentukan kemiringan semu.
2. Menentukan kedudukan bidang dari dua kemiringan semu pada ketinggian yang sama.
3. Menentukan kedudukan bidang dari dua kemiringan semu pada ketinggian yang berbeda.
4. Menentukan Kedudukan Bidang berdasarkan problems tiga titik (Three Point Problems).

Maksudnya menentukan kedudukan bidang dari tiga titik yang diketahui posisi dan ketinggiannya, dimana titik tersebut terletak pada bidang rata yang sama.Dan bidang tersebut tidak terlipat / terpatahkan serta ketiga titik tersebut ketinggiannya berbeda.
2.3        Struktur Garis
Seperti halnya struktur bidang, struktur garis dalam geologi struktur dapat dibedakan menjadi dua yaitu:
• Struktur garis rill adalah struktur garis yang arah dan kedudukannya dapat diamati langsung dilapangan misalnya gores garis yang erdapat pada bidang sesar.
• Struktur garis semu adalah semua struktur garis yang arah atau kedudukannya ditafsirkan dari onentasi unsur- unsur struktur yang membentuk kelurusan atau laniasi.
Berdasarkan seat pembentukanya struktur garis dapat dibedakan menjadi struktur garis primer dan stn&w garis sekunder dari contoh-contoh struktur garis yang disebutkan diatas yang termasuk struktur garis primer adalah liniasi atau penjajaran mineral - mineral pada batuan beku tertentu ,arah liniasi struktur sedimen dan yang termasuk struktur garis sekunder adalah gores-garis , liniasi memanjang fragmen breksi sesar.garis poros lipatan dan kelurusan –kelurusan
topografi, sungai, dsb.
Kedudukan struktur garis dinyatakan dengan istilah – istilah:
- Arah penujaman (Trend) penunjaman (Plunge).
- Arah kelurusan (Bearing) dan Rake atau Pitch.

2.3.1 Definisi Istilah – istilah dalam struktur garis.
Arah penujaman (Trend) adalah jurus dari bidang vertical yang melalui garis dan menunjukan arah penunjaman garis tersebut ( hanya menunjukkan suatu arah tertentu). Arah kelurusan (Bearing) adalah jurus dari bidang vertical yang melahn gar's tetapi tidak menunjukan arah penunjaman garis tersebut (menunjukkan arah – arah dimana, salah satu arahnaya merupakan sudut pelurusnya).
Rake (Pith) adalah besar sudut antara garis dengan garis horisontal, yang diukur pada bidang dimana garis tersebut terdapat besamya rake sama dengan atau lebih kecil 90.

Keterangan :
A-B : Jurus (Strike) bidang ABCD, diukur terhadap arah utara : Kemiringan (Dip) bidang ABCD, diukur terhadap arah utaraa  β : Kemiringan Semu (Apparent Dip) O-A : Arah
Kemiringan (Dip Direction)
Gambar 2.2. Proyeksi Kemiringan dan kemiringan semu
2.3.2.      Cara Penulisan (Notes) dan Simbol Strukur Garis
Untuk menyatakan kedudukan suatu sruktur garis secara, tertulis dan suatu cara penulisan simbol pada peta geologi.
Penulisan notes' sruktur garis dinyatakan dengan
• "Plunge, Trend ( arah penujaman)".
• Sistem Azimuth , hanya mengenal satu penulisan yaitu Y°,N X° E.
- Xo adalah "Trend',besarnya = 0° - 360°
- Y° adalah "Plunge", besarnya = 0° - 90° (sudut vertikal).
• Sistem Kwadran, Penulisan tergantung pada posisi kwadran yang diinginkan sehingga, mempunyai beberapa cara penulisan, misalnya:
- Sistem azimuth, 30°,N 45° E, make menurut sistem kwadrannya adalah 45°,N 45° E.
- Sistem azimuth, 45°,N 90° E, make menurut sistem kwadrannya adalah 45°, N 90° E, atau 45° S 90°E.
2.3.3 Cara Pengukuran Struktur Garis dengan Kompas Geologi
a. Pengukuran struktur garis yang mempunyai "Trend”
Adapun yang termasuk struktur garis ini adalah gores garis pada bidang sesar, arah arus pembentukan struktur sedimen dan garis sumbu lipatan.
• Pengukuran Arah "Trend".
1. Tempelkan alat Bantu (buku lapanganl"Dipboard') pada posisi tegak dan sejajar dengan struktur garis yang akan diukur.
2. Tempelkan sisi "W' atau "E" kompas pada posisi kanan atau kiri alat Bantu dengan visir kompas ("Sighting Arm") mengarah kepenujaman struktur garis tersebut.
3. Levelkan/horisontalkan kompas (Nivo Mata Sapi, dalam keadaan horisontal), make harga yang ditunjuk oleh jarum utara, kompas adalah harga arah penunjamannya ("Trend").
• Pengukuran "Plunge" ( Sudut Penunjaman ).
1. Tempelkan sisi "W" kompas pada sisi etas alat bantu yang masih dalam keadaan vertikal.
2. Levelkan "Dinometer" dan baca besaran sudut vertikal yang ditunjukkan oleh penunjuk pada skala "Dinometer".
• Pengukuran "Pitch"( Rake ).
1. Buat garis horizontal pada bidang dimana sturktur garis tersebut terdapat (sama dengan jurus bidang tersebut) yang memotong struktur garis yang akan diukur "Rake " -nya.
2. Ukur besar sudut lancip yang dibentuk oleh garis horisontal, butir (1) dengan struktur garis tersebut mengguna-k-an busur derajat.
b. Pengukuran Struktur Garis yang tidak Mempunyai "Trend"(Horisontal).
Adapun yang termasuk dalam struktur garis ini pada umumnya berupa arah¬arah kelurusan (arah limasi fragmen breksi sesar, arah kelurusan sungai, arah kelurusan gawir sesar, d1l). Jadi yang
perlu diukur hanya arah kelurusan (bearing) saja.
• Pengukuran "Bearing".
1. Arah visir kompas sejajar dengan unsur-unsur kelurusan struktur garis yang akan diukurmisalnya sumbu memanjang fragmen breksi sesar.
2. Pada posisi butir (1) levelkan kompas (nivo mata sapi dalam keadaan horisontal), make harga yang ditunjuk oleh jarum utara kompas adalah harga arah"Bearing"-nya.
2.3.4 Aplikasi metoda grafis I untuk struktur garis
Aplikasi yang akan dibahas disini meliputi pemecahan masalah-masalah struktur garis antara lain :
1. Menentukan "Plunge" dan "Rake" sebuah garis pada suatu bidang.
2. Menentukan kedudukan struktur garis dari perpotongan dua bidang.
2.4 Tebal dan Kedalaman
Penentuan tebal dan kedalaman dalam geologi struktur pada dasarnya merupakan aplikasi dari metode grafis dan goneometris.
2.4.1 Tebal
Tebal merupakan jarak tegak lures antara dua bidang yang sejajar, yang merupakan batas lapisan batuan.
Gambar 2.3. Proyeksi Ketebalan
Secara garis besar, masalah–masalah penetuan ketebalan dapat dibedakan berdasarkan cara perhitungan nya menjadi :
a.       Perhitungan berdasarkan pengukuran langsung
b.      Perhitungan secara langsung hu dapat dilakukan dilapangan dengan syarat kemiringan lereng tegak lures dengan kemiringan lapisan,seperti :
- Medan datar/tak berelief dengan lapisan relatif tegak (Gambar 2.4.1.a).
- Medan vertical dengan lapisan relative horizontal, (Gambar 2.4.1.b).
Gambar 2.4. Pengukuran medan vertical dan horizontal
c.       Perhitungan berdasarkan pengukuran tidak langsung.
d.      Perhitungan secara tidak langsung im dapat dilakukan dengan macam-macam cara tergantung pada
1. Keadaan topografi.
2. Kedudukan lapisan batuan.
Unsur-unsur yang dijumpai dilapangan yang dipakai sebagai data perhitungan geometri adalah:
1. Lebar singkapan (s).o).a
2. Kedudnkan /kemiringan lapisan batuan ( ).g
3. Besar sudut lintasan arahjums lapisan (
4. Besar sudut kemiringan lereng /slope (β).
e. Menentukan Tebal Batuan
Diilustrasikan sebagai berikut:
Dimana :
w : Tebal Semu
o : Dip/Kemiringan Semua
β : Slope/ Kemiringan Lereng
Dip > Slope
o – β})aRumus : t = w sin (180o – t = w sin β
Dimana : w = Tebal Semu
o = Dip/Kemiringan Lapisana
β = Slope/Kemiringan Lereng
t = Tebal Sebenarnya
2.4        Kedalaman
Kedalaman merupakan jarak vertical dari ketinggian tertentu (permukaan air laut) ke arah bawah terhadap suatu titik, garis atau bidang.
Gambar 2.6. Proyeksi Kedalaman
Secara, garis besar, masalah – masalah penentuan kedalaman dapat dibedakan /dibagi berdasarkan cara perhitungan nya menjadi :
1. Perhitungan berdasaarkan pengukuran tegak lurus jurus lapisan.
2. Perhitungan berdasarkan pengukuran tidak tegak lurus jurus lapisan.
2.4.1 Pengukuran kedalaman pada, arah lintasan tegak lurus jurus lapisan
1. Medan datar/topografi tidak berelief
oad = 1 tg
keterangan :
d : Kedalaman
I : Panjang lintasan pengukuran
2. Medan /topografi dengan slope
a. Dip searah dengan slope. o - sin βo)ad = I (cos βo. tg  (Gambar 2.4.3)
b. Dip berlawanan dengan slope. o + sin βo) (Gambar2.4.4)ad = I (cos βo . tg
2.4.2 Pengukuran kedalaman pada arah tidak tegak lurus jurus lapisan
a. Dip searah dengan slope o – sin βo)go. cos βo. - sin ad = I (tg  
b. Dip berlawanan dengan slope o + sin βo)go. cos βo. - sin ad = I (tg
2.5 Pola Singkapan dan Peta Geologi
Pola singkapan adalah suatu bentuk penyebaran batuan dan struktur yang tergambarkan dalam peta geologi .
Peta geologi adalah suatu peta yang menggambarkan keadaan geologi daerah tersebut, meliputi penyebaran batuan (litologi), penyebaran struktur dan bentuk morfologinya.
Besar dan bentuk dari pola singkapan tergantung dari beberapa hal, yakni:
1. Tebal lapisan.
2. Topografi/morfologi.
3. Besar kemiringan (Dip) lapisan.
4. Bentuk struktur lipatan.
Hukum " V" (V Rule)
Hubungan antara lapisan yang mempunyai kemiringan dengan bentuk topografi berelief akan menghasillcan .suatu pola singkapan yang beraturan, diamana aturan tersebut dikenal dengan hukum "V". Aturan-aturan tersebut adalah sebagai berikut :
a) Lapisan horizontal akan membentuk pola singkapan yang mengikuti pola garis kontur.
b) Lapisan dengan kemiringan yang berlawanan dengan arah kemiringan lereng maka kenampakan lapisan akan memotong lembah dengan pola singkapan membentuk huruf "V" yang berlawanan dengan arah kemiringan lembah.
c) Pada lapisan tegak akan membentuk pola singkapan berupa garis lurus dimana pola singkapan ini tidak dipengaruhi oleh keadaan topografi.
d) Lapisan yang miring searah dengan arah kemiringan lereng dimana kemumgan lapisan lebih besar danpada kemiringan lereng akan membentuk pola smgkapan dengan huruf "V" mengarah sama (searah) dengan arah kemiringan lereng.
e) Lapisan dengan kemiringan yang searah dengan kemiringan lereng dimana besar kemiringan lapisan lebih kecil dari kemiringan lereng , maka pola singkapannya akan membentuk huruf "V" yang berlawanan dengan arah kemiringan lereng /lembah.
f) Lapisan yang kemiringan nya searah dengan kemiringan lembah dan besarnya kemiringan lapisan sama dengan kemiringan lereng/lembah maka pola singkapan tampak .



2.5.1 Metoda Pembuatan Pola Singkapan dan Peta Geologi
Dalam pembuatan peta geologi, dilakukan dengan cara mengamati singkapan-singkapan batuan yang dijumpai. Pengamatan singkapan batuan biasanya dilakukan dengan mengambil jalur disekitar aliran sungai disepanjang aliran sungai inilah dapat dijumpai smgkapan batuan dengan baik.
Pengamatan yang dilakukan meliputi jenis batuan, penyebaran, kedudukanya, hubungan antar satuan (litologi), strukturnya (baik struktur primer maupun skunder).
a) Data singkapan dari flap lokasi pengamatan diplotkan pada peta dasar (peta topogmfi) berupa simbol, tanda, warns.
b) Batas litologi, garis sesar, sumbu lipatan dapat berupa garis penuh (tegas) bila diketahui dengan pasti atau berupa garis putus-putus jiak diperkirakan.
c) Legenda peta diurutkan sesuai dengan urutan stratigmfi (hukum superposisi).
d) Penyebaran satuan batuan (pola singakapannya dapat ditarik batasnya diantara satuan batuan yang berlamw dengan memperhatikan hukum "V".

2.5.2 Pembuatan Penampang Geologi
Suatu gambaran yang memperlihatkan keadaan geologi secara vertical, sehingga diketahui hubungan satu dengan lamnya. Dalam pembuatan penampang geologi dipilih suatu jalur tertentu sedemikian rupa, sehingga dapat memperlihatkan dengan jelas semua keadaan geologinya secara vertikal. Dalam hal ini dipilih atau dibuat suatu jalur yang arahnya tegak lurus terhadap jurus umum lapisan batuan, sehingga dalam penampang akan tergambarkan keadaan kemiringan lapisan yang asli (true dip).Namun pembuatan penamapang terkadang jugs melalui jalur yang tidak tegak lurus terhadap jurus lapisan batuan maka disini penggambaran besar kemiringan lapisan nya adalah merupakan kemiringan lapisan semu (apparent dip) yang besarnya sesuai dengan arah sayatan terhadap jurus lapisan batuan.
Rekonstruksi :
a) Perhatikan arah sayatan penampang terhadap jurus umum lapisan (tegak lurus atau tidak).
b) Buat "base line" yang panjangnya sama dengan panjang garis penampang peta geologi.
c) Buat "end line" dan berikan angka – angka yang menunjukan ketinggian sesuai dengan skalanya.
d) Buat "profile line" dengan cara mengeplot ketinggian garis kontur yang terpotong garis penampang, dan kemudian hubungkan.
e) Gambarkan keadaan geologinya, meliputi batas lapisan, batas struktur dan lainnya, yang terpotong oleh garis penampang.

2.6 Metoda Statistik
Metoda, statistik, yakni suatu metoda, yang diterapkan untuk mendapatkan kisaran harga rata – rata atau harga maksimum dari sejumlah data acak satu jenis struktur . dari sim kemudian dapat diketahui kecenderungan – kecenderungan, bentuk pola, ataupun kedudukan umum dari jenis struktur yang sedang dianalisa .
Metoda, statistik yang sering atau umum dipakai dalam kegiatan analisa struktur, terdiri dari 2 (dua) metoda, yang pengelompokannya, didasarkan etas banyaknya parameter yang akan diketahui hasil statistiknya.
Metoda statistik dengan satu, parameter yakni pembuatan diagram yang didasarkan atas, sejumlah data struktur yang hanya, memiliki satu, parameter saja.
Metoda statistik dengan dua parameter yakm pembuatan diagram --diagram, bedasarkan sejumlah data struktur yang memiliki parameter.

2.6.1 Diagram Kipas
Tujuan diagram ini dimaksudkau untuk mengetahui arah kelurusan umum dari unsur – unsur struktur yang data-datanya, hanya, terdiri dari satu unsure pengukuran.
Tabulasi data - data pengukuran yang terkumpul dimasukan kedalam suatu. table (tabulasi data),dengan tujuan untuk mempermudah proses dalam pembuatan diagramnya. Dalam hal ini jumlah data tidak terdapat batasan mengenai banyak nya data yang harus dikumpulkan. Semakin banyak data lapangan dalam analisa, make hasilnya akan mendekati keadaan sebenarnya.


Pembuatan Diagram Kipas
Dari pemasukan data-data pengukuran kedalam data suatu tabel diperoleh harp prosentase maksimum 24%. Harga ini dipakai sebgai patokan untuk menetukan panjang jari –jari diagram setengah lingkaran .
Panjang jari–jari Dari harga maksimum 24% = 6 cm. kemudian panjang jari–jari tersebut dibagi enam , sehingga, setiap satu, interval berharga, 4%. Selanjutnya dari setiap interval dibuat busurnya, dengan pusat titik nol dan panjang jari–jari sama, dengan interval yang bersangkutan. kemudian bagilah sisi paling luar dari busur sesuai dengan pembagian arahnya. Melalui pembagian interval tersebut tariklah garis- garis kearah pusat busur.

2.6.2. Diagram roset.
Tujuan diagram ini dimaksudkan untuk mengetahui arah kelurusan umum dari unsur – unsur struktur yang data – datanya hanya memiliki satu pengarahan.
Tabulasi data –data pengukuran lapangan yang terkumpul dimasukan kedalam suatu table dengan tujuan untuk mempermudah pembuatan diagramnya.

Pembuatan diagram roset
Pada prinsipnya cara pembuatan diagram roset ini sama dengann cara pembuatan diagram kipas . perbedaanya hanya terletak pada bentuknya, diagram kipas berbentuk setengah lingkaran sedangkan diagram roset merupakan lingkaran penuh.

2.7 Kekar
Suatu rekahan yang relative tanpa mengalami pergesaran pada bidang rekahannya . penyebab tedadinya kekar dapat disebabkan oleh gejala tektonik maupun non tektonik. Klasifikasi kekar ada beberapa macam, tergantung dasr klasifikasi yang digunakan, diantaranya :
a) Berdasarkan bentuknya.
b) Berdasarkan ukurannya.
c) Berdasarkan kerapatannya.
d) Berdasarkan cara terjadinya (genesanya).
2.7.1 Klasifikasi kekar berdasarkan genesanya
a. Shear joint (kekar gerus), tedadinya akibat adanya tegasan tekanan (compressive stress).


Gambar 2.8. Kekar Gerus

• Tanda-tanda untuk mengetahui kekar genus ini
- Bidang kekar rata (lurus)
- Adakala terdapat struktur "Pumice" akibat pergeseran yang sangat kecil.
- Bidang kekar rata dan rapat, tak ada pengisian walau memotong batuan yang bermacam-macam maka dibidangnya tetap rata.

b. Kekar tegangan (Tension joint) atau kekar tarik adalah kekar yang terjadi karena gaya tarik (tension) diman kekamya tegak lurus dengan gaya pembentuknya.

Gambar 2.9. Kekar Tarik
• Tanda-tanda kekar tarik di lapangan
- Sifatnya membuka
- Biasanya rekahanya terisi dengan batuan lain
- Bidang kekar tidak rata, sehingga jika memotong permukaan akan berupa garis yang tidak lurus.
Tension joint (tension stress), dibedakan atas ;
a. Extension joint, terjadi akibat pemekaran atau tarikan.
b. Release joint, terjadi akibat berhentinya gaya yang berkerja.

2.7.2. Analisa Kekar
Secara skematis prosedur analisanya dalah sebagai berikut : Pengumpulan atau pencataan data – pengelompokan data- penyajian data- analisa data- interpretasi- diskusi.
Untuk analisa data , digunakan metoda statistic yang dilakukan dengan:
a. Diagram kipas.
- Pita radial.
- Garis radial.
b. Histogram.
Diagram kontur, dengan mengunakan proyeksi streografi dan proyeksi kutup.
Tujuan analisa :
- Menentukan kedudukan atau arah umum dari kekar.
- Menentukan arah umum dari gaya utama.

2.8 Sesar
Suatu, bidang rekahan atau zona rekahan yang telah mengalami pergeseran. Beardasarkan tipe gerakannya secara umum dibedakan atas :
a. Sesar translasi, yaitu jenis sesar yang pergeseranya sepanjang garis lurus.
b. Sesar rotasi , yaitu jenis sesar yang pergeseranya, mengalami perputaran/ terputar.
Sifat pergeseran sesar dapat separation ( pergeseran semu) dan slip pergeseran relative) :
a. Separation jarak adalah tegak lurus antara dua bidang yang tergeser dan diukur pada bidang sesar.
b. Slip adalah pergeseran relative pada sesar , diukur dari blok 1 ke blok lamnya, merupakan pergesaran titik - titik yang sebelumnya berimpit. Total pergeseran relatifnya disebut dengan net — slip.
Unsur-unsur / istilah dalam sesar :
a. Bidang sesar , yaitu, suatu, bidang sepanjang rekahan dalam batuan yang tergeserkan.
b. Dip sesar, yaitu sudut antara, bidang sesar dengan bidang horisontal dan diukur tegak lurus jurus sesar. Strike dan dip sesar menunjukkan kedudukan dari bidang sesar.
c. Hade yaltu sudut antara, garis vertikal dengan bidang sesar, dan merupakan penyiku dari dip sesar.
d. Thrue , yaitu komponen vertikal dari slip / speration diukur pada bidang vertikal yang tegak lurus jurus sesar.
e. Heave, yaitu komponen horisontal dari slip / separation , diukur pada bidang vertical yang tegak lurus, jurus sesar.
f. Hanging wall dan foot wall yaitu blok yang terletak diatas bidang sesar dan dibawah bidang sesar.


Gambar 2.10. Struktur Sesar.

2.8.1 Klasifikasi bidang sesar
Penamaan dari suatu sesar adalah tergantung dari dasar klasifikasi yang digunakan, diantara sebagai berikut :
Berdasarkan orientasi pola tegasan utama yang menyebabkannya
a. Thrust fouls, jika tegasan utama maksimum dan intermediate adalah horisontal.
b. Normal fault, jika pola tegasan utama maksimum adalah vertikal.
c. Wrench fault (strek slip fault), jika pola tegasan utama maksimum dan minimum adalah horisontal.

2.9 Lipatan
Merupakan basil perubahan bentuk dan suatu bahan yang ditunjukkan sebagai lengkungan atau kumpulan dan lengkungan pada unsure garis atau bidang di dalam bahan tersebut.
Mekanisme gaya yang menyebabkannya ada dua macam :
a. Buckling (melipat) disebabkan oleh gaya tekan yang arahnya sejajar dengan permukaan lempeng.
b. Bending (pelengkungan), disebabkan oleh gaya tekan yang aralmya tegak lurus permukaan lempeng.
Berdasarkan proses lipatan dan jenis batuan yang terlipat dapat di bedakan menjadi 4 macaw lipatan, yaitu :
a. Flexur /Competent Folding termasuk di dalamnya Parallel Fold.
b. Flow /Incompetent Folding termasuk di dalamnya Similar Fold.
c. Shear folding.
d. Aexure and flow folding.

2.9.1. Unsur-unsur lipatan
a. Antiklin adalah unsur shuktur lipatan dengan bentuk convex keatas dengan urutan lipatan batuan yang tua di bawah dan yang muda diatas.
b. Sinklin adalah unsur struktur lipatan dengan bentuk concave keatas dengan uratan lapisan batuan yang tua dibawah dan yang muda di etas.
c. Antiform adalah unsur shuktu lipatan seperd antil-din dengan lipatan batuan yang tua diatas dan yang muda di bawah.
d. Sinform adalah unsur struktur lipatan seperd sinklin dengan lapisan batuan tua diatas dan yang muda di bawah.
e. Hinge adalah pelenkungan maksimum dari lipatan
f. Crest adalah puncak titik tertinggi dari lipatandil.




Gambar 2.11. Struktur Lipatan

2.9.2 Klasifikasi lipatan
Untuk menamakan suatu lipatan harus sesuai dengan klasifikasi yang sudah ada, yang mane klasifikasi tersebut ada bermacam-macam tergantung dari dasar yang di gunakan.

2 9.3 Analisa Lipatan
Analisis lipatan dilakukan untuk mengetahui arah lipatan, kedudukan bidang sumbu dan garis sumbu, bentuk lipatan,penunjaman dan pole tegasan yang berpengaruh terhadap pembentukan lipatan.
Untuk struktur lipatan yang ben&uran kecil (mikro) dan bentuk tiga dimensi dapat ditaksirkan, analisanya dilakukan dilapangan dengan cara mengukur langsung unsur-unsurnya (kedudukan garis-garis sumbu bentuk lipatan, dan arah penunjaman).
Untuk lipatan berskala besar (mayor fould) dimana sexing bentuk utuhnya tidak teramati secara langsung atau struktur lipatan itu sudah terkikis make terhadapnya dilakukan analisis yang berdasarkan pada :
a. Mengukur kedudukan struktur bidang yang terlipat, yakni bidang perlapisan (bedding or lentation) pada batuan sediment dan bidang-bidang foliasi pada batuan metamorf.
b. Mengukur kedudukan "deavage" (deavage orientation) yakni rekahan yang bervariasi sejajar dan umumnya sejajar pula dengan kedudukan bidang sumbu lipatan ( axial plane deavages ).
c. Mengukur bidang-bidang dan garis-garis sumbu lipatan-lipatan kecil Hinge lines of small fold).
b. Mengukur perpotongan bidang-bidang perlapisan dengan "deavage" (deavage bedding intersection).

BAB III
PENUTUP

3.1 Kesimpulan
Dari pelaksanaan praktikum geologi struktur dapat disimplkan bahwa :
1. Geologi struktur adalah studi mengenai distribusi tiga dimensi tubuh batuan dan permukaannya yang datar ataupun terlipat, beserta susunan internalnya.
2. Unsur-unsur struktur secara geometris pada dasarnya hanya terdiri dari dua unsur geometris yaitustruktur bidang dan struktur garis dimana struktur bidang terdiri dari Bidang perlapisan kekar, sesar, foliasi dan sumbu perlipatan sedangkan struktur garis terdiri dari gores-garis, perpotongan dua bidang, liniasi dan lain-lain.
3. Struktur geologi perlu di pelajari karena pada daerah ini merupakan tempat terperangkapnya mineral-mieral berharga.
4. Pola singkapan adalah suatu bentuk penyebaran batuan dan struktur yang tergambarkan dalam peta geologi.
5. Besar dan bentuk dari pola singkapan tergantung dari beberapa hal, yakni:
• Tebal lapisan.
• Topografi/morfologi.
• Besar kemiringan (Dip) lapisan.
• Bentuk struktur lipatan.
6.

3.2 Saran
Berdasarkan dari keseluruhan pertemuan dan pelaksanaan praktikum, baik indoor maupun out door, penulis menyarankan agar pelaksanaan praktikum selanjutnya dapat lebih baik lagi, yaitu persediaan peralatan-peralatan lapangan agar dapat diperbanyak dan diperbaharui sehingga membuat mahasiswa lebih terampil dan mahir dalam pengaplikasian di lapangan, serta untuk pelaksanaan praktikum di lapangan (out door) lebih ditingkatkan lagi, mengingat kegiatan praktikum di lapangan lebih aplikatif.